

Tethering an Android Smartphone to USB Devices

March 2011

BizDev@SecureCommConsulting.com

Veteran Owned Small Business
DUNS: 003083420

CAGE: 4SX48

http://www.securecommconsulting.com

2 | P a g e

1.1. Purpose
This paper presents a brief background of Universal Serial Bus (USB) and the architecture of
USB drivers in the Linux operating system. The purpose of this paper is to provide a brief
explanation of the technical issues involved in making an Android smart phone operate as a
USB Host, and properly connect and interoperate with USB devices.

1.2 General Background
The Universal Serial Bus (USB) architecture includes a USB Host and a USB Device. The Host is
the master and controls the communication between itself and all of its connected USB
Devices. Normally1, smart phones are considered USB devices, and are connected to personal
computers (PCs) or laptops. However, a popular topic of late is the tethering of an Android
smart phone to a USB device (i.e. the smart phone becomes the USB host). This is due to
increased demand for smart phone applications that utilize external USB devices (such as mass
storage devices, keyboards, and even external networking devices like radios). As a USB Device,
a smart phone cannot connect to other USB devices; therefore, to enable smart phones to
connect to either a USB device or a USB host, smart phone USB drivers must be modified to
support USB OTG (On-The-Go) as depicted in Figure 1. USB OTG allows a component to take on
the role of either a USB Host or a USB Device, whichever is best suited for the currently
connected gadgets. Software development is required to achieve this. Further, if a secure and
maintainable solution is desired, cooperation from smart phone vendors is needed to maintain
this driver as part of the smart phone’s kernel.

Figure 1: USB Host and Device

The good news is that Android application developers and users alike are requesting USB OTG
support; and, given the highly competitive nature of the smart phone market, it is likely that

1 At the date of this writing, commercially available Android smart phones connect only to USB hosts. Given the
rapid advances in the smart phone space, it is anticipated that this will change in a few months from this writing.

3 | P a g e

smart phone vendors will start providing USB OTG in the next 6 -12 months. For those Android
application developers who can’t wait for the vendors to catch up with demand, this paper will
explore the challenges involved in providing a custom USB OTG solution.

1.3 USB (Universal Serial Bus) History
According to the USB 2.0 specification, the host supplies 5V of power to a connected USB
device over the USB cable in order to signal the device that a host is connected. PCs generally
are much more powerful than smart phones, and are usually connected to an AC power source
or have large batteries, and so were given the host role. Smart phones and many other gadgets
were given the device role since they typically were much slower than the host and had much
lower battery capacity. However, in a short period of time, smart phone technology has
advanced, and the line between the PC and smart phone capabilities has blurred. The desire to
have smart phones and other devices fill the role of the USB host, led to modification of the
USB 2.0 specification to include the USB On-The-Go supplement.

1.4 Linux OS & Driver Architecture
The core of Android is the Linux operating system, and the services provided by Android are
based upon the Linux kernel and Linux services. Android applications are actually Java
applications, but use of the smart phone’s underlying hardware is based upon Linux libraries,
device drivers, and the Linux kernel. Support for USB services in an Android application requires
the use of Linux device drivers to access the USB hardware.

The USB driver, shown in Figure 2, is a basic USB 1.1/USB 2.0 driver that supports Host mode
only (not USB OTG) to connected devices. Support for USB on the Host is comprised of several
device drivers, each of which logically communicates with an equivalent device driver on the
USB Device. The Host Controller Driver is designed specifically for the Host Controller hardware
that exists on the particular smart phone2. This is due to the fact that the Host Controller driver
must directly manipulate the hardware registers, control registers, and data buffers in the Host
Controller hardware. Since each Host Controller Chipset manufacturer has a different
architecture for their Host Controller chipsets, the registers and buffers in each chipset are
slightly different. The Host Controller driver encapsulates these differences, and prevents other
components of the USB stack from being impacted by these hardware differences.

The Host Core driver implements standard USB functions, like configuration to accommodate
the attached devices, buffer management, data transfer to devices, etc. These functions are
common across all Host Controllers, and the interface to the Host Controller driver is used to

2 It should be noted that similarities do exist between the different Host Controller drivers, and there are some
universal host controller drivers that operate on several different chipsets. However, the specific Host Controller
driver must be matched to the Host Controller chipset on the smart phone, and it may be the case that no open
source (publicly available) Host Controller driver is available.

5 | P a g e

The Linux Operating System supports a series of class drivers to provide access to various device
interfaces over USB. Examples of these class drivers include the Mass Storage Device Class, the
Communications Device Class (CDC), and the Human Interface Device Class (HID). Within these
classes, there are specializations of the class. For example, the CDC includes the CDC-EEM
(Ethernet Emulation Model) and CDC-ECM (Ethernet Control Model). The different USB classes
and the specifications that define them can be found on the USB Implementers Forum web site
(http://www.usb.org/developers/devclass docs).

USB On-The-Go is an amendment to the USB 2.0 specification, and defines an architecture that
allows a USB enabled platform to operate as either a USB Host or USB Device, depending on
how it is connected. A series of new protocols are included in USG-OTG to support the features
of a combined host and device; some of these protocols include the ability to negotiate which
party has the control of the USB bus (Host Negotiation Protocol), control of power usage by the
USB bus (Suspend/Resume/Remote Wakeup protocol), and detection of attached hosts and
devices (Attach Detection Protocol). These new capabilities require a different driver
architecture that includes both the Host mode drivers as well as the Device mode drivers. Figure
3 shows an example USB-OTG driver architecture, which includes the On-The-Go protocols, and
the host and device capabilities.

Figure 3: USB OTG Driver architecture in Linux (requires host, device, and OTG drivers)

1.5 Technical Issues
There are currently no Android smart phones on the market that support USB On-The-Go or
USB Host Mode natively. Technically, all that is necessary to make a smart phone connect as a
host would be to upgrade the USB software on the smart phone. However, there are several

6 | P a g e

issues that must be addressed. Below are the primary technical issues involved in enabling an
Android smart phone to connect to a USB device.

1.5.1 USB Power
Some USB Devices that do not contain a power source (e.g. flash memory sticks) use power
supplied by the USB Host, over the VCC pin of the USB cable, to power themselves. However,
even if a USB Device has its own power source, the USB Host must still supply power over the
VCC pin of the USB cable. This is because 5V DC on the VCC pin is the signal to the USB Device
that a USB Host has connected to it. Therefore, in order to operate in host mode, a smart
phone must be capable of providing 5V DC power over the USB VCC pin to signal the attached
USB Device that a host has connected.

At the time of this writing there are no available commercial Android phones that supply power
on their USB VCC pin3. This is likely due to the fact that a USB port that outputs 5V on the VCC
pin would drain the battery of the smart phone faster. A potential, albeit temporary, solution is
to provide power on the USB VCC pin from an external source, thereby tricking the USB Device
that a Host is connected. This could be accomplished by using a USB hub or a special cable with
a connection to a power supply.

1.5.2 USB Host & OTG Hardware, and Device Drivers
A USB host controller is a chip that provides host functions for a system (as shown in Figure 2
and Figure 3). For the smart phone to support USB Host Mode, the chipset in the phone must
include USB Host Controller hardware. In many cases the host controller is integrated onto the
CPU. However, to operate the smart phone in either host or device mode, the chipset on the
smart phone must also support USB-OTG. Current hardware support for USB-OTG is fairly
common, but driver software to support OTG chipsets is not openly available4.

The host controller chip requires a driver for the Linux operating system in order to use the host
functions. There are no known Android phones that ship pre-packaged with USB host controller
drivers, even though the host controller hardware is present on the phone. A driver would
need to be written for host functions to operate. An open source host controller driver is
available for the Google Nexus One smart phone5. This open source driver will only allow the
phone to operate in host mode (prohibiting operation in device mode). In order to operate in

3 The original Motorola DROID reportedly was able to provide power over its connector using a hacked “dongle”,
but the droid is not sold anymore. Also the Motorola XOOM reportedly supplies power as well, but it is a tablet.
4 Our researched indicates there is OTG hardware support in quite a few phones, including OMAP, Samsung
S5PC110, S5PV210, and others.
5 http://sven.killig.de/android/N1/2.2/usb host/ - Although a driver has been written to support USB host mode
on a Google Nexus One, this driver does not support USB On-The-Go. Consequently the Nexus One is locked in
host mode and cannot communicate with another USB Host (such as a PC).

7 | P a g e

host or device mode, an OTG (On-The-Go) driver must be developed for the specific smart
phone’s chipset.

1.5.3 Class driver
In addition to having USB host mode support, a Class Driver must be available on the host and
loaded to support the particular device function needed. For example, to communicate with a
device via Ethernet, a CDC-EEM driver is needed. Android does not include many class drivers
natively. However, there are many open source class drivers available for Linux, but they must
be recompiled for the particular smart phone that is used. This requires a simple recompiling of
the kernel, however, depending on the smart phone, the bootloader may prevent kernel
modification (see Section 1.5.4). See Section 1.5.5 for impacts to Over-the-Air software
updates.

1.5.4 Bootloader support
The bootloader is a piece of firmware/software that provides services to load the operating
system when a smart phone is first powered on. Many smart phone manufacturers lock the
bootloader to prevent third parties from loading custom kernels on their devices. In order to
add a new Host Controller driver or a Class Driver, the kernel must be recompiled. The
recompiled kernel must then be reloaded onto the smart phone, and the bootloader must load
this new kernel (instead of the old one). Different methods of bootloader locking will prevent
this new kernel from being loaded by the bootloader. This could be based upon the size of the
kernel image or even a digital signature over the kernel itself. There are methods to unlock the
bootloader, but some of these are unreliable, and in nearly every case, will void the warranty
on the phone. It may also be in violation of the end user agreement with the cellular carrier to
use a modified phone on their network. The Google Nexus One and Nexus S have bootloaders
that can be unlocked, but other manufacturers are not as flexible.

1.5.5 Other considerations
In order to modify a phone to support USB Host mode, it is almost assured that the Android
kernel will need to be recompiled with new drivers, or new kernel flags to support dynamically
loadable class drivers that were not included in the original manufacture’s kernel build.
Installing the drivers requires the user to obtain root access on the phone. The process of
obtaining root access opens several potential security risks to the user. In addition, the
warranties of most phones are voided when 3rd party images are installed or when root access
is obtained.

Many smart phone manufacturers continue to provide software updates to the Android
Operating System by pushing them over-the-air. These updates usually include a new kernel
and will overwrite the kernel that is currently on the phone. If a modified kernel is on the
phone, and the manufacturer pushes a new version down, it will remove all the modifications

8 | P a g e

added to the custom kernel. Mechanisms to disable this automatic updating could be
investigated, but how successful they would be is unknown.

The following are some additional open questions:

• Are voice or data services impacted when using a custom kernel?
• What proprietary drivers are phone manufactures using? Can these proprietary drivers

operate with custom kernels and USB host/OTG mode?
• Will Android OS updates continue to be received when running a custom kernel?

In summary, the development required to connect an Android smart phone and USB devices
includes driver and kernel changes. Since drivers are written and compiled for a specific piece
of hardware, unique, although perhaps minor, driver modifications will be needed for each
smart phone in the market. In addition, power must be provided to the USB connector to
indicate to devices that the smart phone is operating as a USB Host. Once these issues are
addressed, an Android smart phone can successfully function as a USB host and connect to a
USB device. However, it is recommended that any solution not involving the smart phone
vendor, be used only for demonstration purposes due to the root access and software updating
issues mentioned above.

